刘欣美

时间:2024-08-18浏览:190



刘欣美   副教授,硕士生导师; 

电子信箱:liuxinmei.1990@163.com

办公地点:无机纳米材料设计与催化性能研究

学习经历:

20129-20176吉林大学凝聚态物理,获博士学位

20179月至今,哈尔滨理工大学,讲师/副教授/教授

20177月至20238, 哈尔滨理工大学,讲师

20213月至今, 哈尔滨理工大学,在站博士后

20239月至今, 哈尔滨理工大学, 副教授

主要研究方向:

1. 无机纳米材料设计与催化性能研究

科研项目:

1.中国博士后第73批面上项目,压力诱导Cu基合金纳米晶界面应变增效电还原CO2制醇,20236月至20246月,8万,在研,主持

2.哈市局青年后备人才,高品质卤氧化铋微纳米粉体形貌调控及应用 CXRC202211041092023-01月至2025-12月,40万,在研,主持

3. 黑龙江省生态环境保护科研项目  利用 Cu-MM=Co,Ni)合金纳米晶增效电还原 CO2 制醇20231月至2024122在研

4.广东省基础与应用基础研究中心基金,区域联合-青年基金,2019A15110585,设计合成Cu基合金及其在中性溶液下催化析氢的应用研究,2020-01-012022-12-3110万,结题,主持

5.国家自然科学基金面上项目,51871083,基于Ni-Mn-Sn磁性记忆合金薄膜的态赫兹调控研究,2019-012022-1260万,结题,参加

6.国家自然科学基金面上项目,11774124,压力诱导纳米金属表面/界面应变调制电催化性能,2018-012021-1262万,结题,参加

发表论文:

1. Surfactant-free synthesis of 2D Cu nanoflakes as electrochemical sensors and their applications for detection of formaldehyde, nitrite and glucose. Journal of Food Composition and Analysis (2024): 106245.

2. Surfactant-Free Synthesis of Hexapod Cu2O@Au Nanocrystals and Their Enhanced Performances in Biosensor and Photo-Catalysis. IEEE SENSORS JOURNAL,2023, 23(24), 30084-30092, (第一作者) (IF:4.3)

3. Surface cleaned CuxPdy alloy: Synthesis and their superior performances in hydrogen evolution reaction and biosensor. Nano Research, 2023,3(第一作者) (IF:10.27)

4. Cu Nanoplates with CleanSurface: Synthesis andTheir Enhanced Biosensors Performance. Journal of Industrial and Engineering Chemistry 2022,108: 476-483. (第一作者) (IF:6.76)

5. Branched CuxAuy nanoalloy with controllable atomic ratios and clean surface: synthesis and their superior performances in hydrogen evolution reaction and biosensors, Journal of Alloys and Compounds, 2023, 947169617. (第一作者) (IF:6.37)

6. Structural,electronicand opticalproperties of KTaO3 under high pressurebasedon first principles. Materials Science in Semiconductor Processing, 2021, 138: 106248 (第一作者) (IF:4.64)

7.Monodispersed CuPt alloySynthesis and their superior catalytic performance in the hydrogen evolution reaction over the full pH range. RSCAdvances, 2021, 11(21), 12470-12475. (第一作者) (IF:4.03)

8. One-pot synthesis of uniform Cu nanowires and their enhanced non-enzymatic glucose sensor performance. Journal of Materials Science,2021,5 6:5520-5531(第一作者)(IF:4.68)

9. An environmentally friendly route to synthesize Cu micro/nanomaterials withsustainable oxidation resistance” and promising catalytic performance RSC advances 2016, 6(41) : 35036-35043 (第一作者) (IF:4.04)

10. Cu Nanowires with Clean Surfaces: Synthesis and Enhanced ElectrocatalyticActivity. ACS APPLIED MATERIALS & INTERFACES, 2016,8(40):26886-26894(第一作者) (IF:10.38)

11.A feasible approach to synthesize Cu2O microcrystals and their enhanced non-enzymatic sensor performance. RSC advances, 2015, 5(73): 59099-59105. (第一作者) (IF:4.04)

12. Cu NWs@Pd with Controllable Diameter: Synthesis and Their Enhanced Sensor Performances in the Detection of Glucose and H2O2 Journal of Nanoparticle Research, 2022,24(3), 73. (第一作者) (IF:2.53)

13. Enhanced ferroelectric and piezoelectric performance of (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free ceramics upon Ce and Sb Co-doping RSC advances, 2021,11:2616-2623. (通讯作者) (IF:4.04)

14. One-step synthesis of a novel Z-schemem-Bi2O4/Bi2O4-2x hetero junction for enhanced degradation of organic dyes and phenol under visible light. Journal of Materials Science, 2020,55:10453-10465. (通讯作者) (IF:4.68)

15. K0.5Na0.5NbO3-SrTiO3/PVDF Polymer Composite Film with Low Remnant Polarization and High Discharge Energy Storage Density. Polymers, 2019, 11(2):310-310. (通讯作者) (IF:4.97)

16. KTN@ Ag nanorods: Synthesis and their wide controllable range for the local surface plasmon. Optical Materials 2022,134: 113242.(通讯作者) (IF:3.75)

17. A surface modification of KTa0.5Nb0.5O3 by APDS and its enhanced dielectric properties for polyimide nanocomposites. Materials Today Communications 2022, 31: 103615 (通讯作者) (IF:3.64)

18. Wide controllable range for the local surface plasmon resonance of Cu NWs. Optik 2022, 269: 169851. (通讯作者) (IF:2.84)

发明专利:

1.一种直径可控Cu纳米线的制备方法(ZL201810332181.6)排名:[1/8]

2.一种室温条件下制备片状Cu纳米晶的方法 (ZL201810353532.1) 排名:[1/4]

3.一种高分散性Pt-Cu合金纳米颗粒的制备方法 (ZL201810454068.5) 排名:[1/6]

4.一种液相法制备小尺寸CuBr纳米颗粒的方法(ZL202011390375.5) 排名:[1/6]

5.一种室温制备CuPt纳米颗粒的方法 (ZL202110104933.5) 排名:[1/6]

6.一种高纯度 Cu3Pt纳米颗粒及其制备方法(ZL202110068946.1) 排名:[1/4]

7.一种CuPd合金纳米晶的制备及其组分调控方法(ZL202111171249.5) 排名:[1/6]

8.一种CuBr纳米线及其制备方法(ZL20221001733.X) 排名:[1/7]

9.一种分支状CuAu合金纳米晶及其制备方法(ZL202210125431.5) 排名:[1/5]

10.一种鱼骨形CuBr纳米晶及其制备方法(ZL 2023106640551)排名:[1/5]

11.一种Cu纳米花的制备方法及其在可乐糖份检测中的应用(ZL202310720046.X)排名:[1/5]

12.一种六分枝状Cu2O@Cu的制备方法及其在甲醛传感中的应用(ZL2022117152631)排名:[1/5]

13.一种利用Cu72Pt28合金纳米晶检测水溶液中亚硝酸钠浓度的方法(ZL202311263629.0 )排名[1/5]

14.一种三角片Cu30Au70合金纳米晶的制备方法(ZL202310926519.1 )排名[1/6]

15.一种利用Cu修饰C纳米球增效有机染料催化降解的方法(ZL2024103465127)排名[1/4]

16.一种低温下制备铜纳米线的方法(ZL201610109000.4) 排名:[2/4]

17.一种提纯铜纳米颗粒的方法(ZL201410280676.0)排名:[2/5]

18.一种具有抗氧化性铜纳米颗粒的制备方法(ZL201410280679.4) 排名:[2/5]

19.一种多孔金纳米晶的低温水相制备方法 (ZL201610139284.1) 排名:[3/4]

20.一种多孔银微纳米结构及其形貌及尺寸可控的制备方法 (ZL201410809302.3) 排名:[3/4]

21.一种镍纳米粒子的制备方法(ZL201510382583.3)排名:[3/4]

22.一种水相制备 Pt-Cu 纳米片状合金的方法 (ZL202010616026.4)排名:[3/5]

23.一种高纯度六边形Cu纳米晶的制备方法(ZL202110794485.6) 排名:[3/4]

24.一种高击穿、低介损的KTN/PI复合薄膜的制备方法 (ZL202111170486.X)排名:[3/3]

25.一种空心多面体结构氧化亚铜的制备方法(ZL201310472561.7) 排名:[2/4]